Estimating the Consumer's Burden from Administered Markets

Robert McCullough, McCullough Research http://www.mresearch.com

January 13, 2011

Introduction

 For the last decade we have seen the prices to consumers diverge between RTO and non-RTO states

– How much of this is the inefficiency of administered markets?

– How much of the cost is fuel and how much is divestiture?

1/13/2011

3

Data

- Is at a premium RTO data is especially difficult to find
- FERC generally does not check required reports for timeliness or accuracy
- EIA data is basically all that is left

Times Series/Cross Sectional Analysis

- We can extend the data set by looking at both states and months
- From 1996, this gives a universe of almost 9,000 observations
- Specification of the question is always a problem, but the right answer is a simple hypothesis without data mining

A Nice Counterexample

- In 2006, Harvey, McConihe, and Pope conducted a "similar" study to show that RTOs lowered prices
- As usual, the study posed an odd question, used cherry-picked data, and seemingly reflected a clear bias
- How often do you compare Arkansas with New York?

Why Avoid Louisiana?

- As we will see in a moment, eliminating states allows one to select the appropriate conclusion
- This is the statistician's version of "he loves me, he loves me not"

McCullough Research's Sample

A Simple Specification

10

Model Results

How many alternative models were run?

- None
- One model, one data set, one result

Peaks in 2001 and 2008 reflecting adverse conditions

Conclusions

- RTOs are costing consumers approximately \$1 billion a month
- While much of the cost comes from overall cost increases, the largest single impact appears to be a high response to natural gas price hikes

 even though the percentage use of gas is comparable with non-RTO states

. xtreg rate gas coal rto rtogas, fe level(99.9)

	Fixed-effects (within) regression Group variable: state					of obs = of groups =	2293 2293 18	
	R-sq: within betweer overall	= 0.4777 = 0.5780 = 0.6236			Obs per	r group: min = avg = max =	1 127.4 176	
	corr(u_i, Xb)	= 0.6353			F(4,227 Prob >	71) = F =	519.18 0.0000	
	rate	Coef.	Std. Err.	t	P> t	[99.9% Conf.	Interval]	
	gas coal rto rtogas _cons	1.2719 .755276 -2054.428 .362831 562222.5	.0376444 .0977221 13381.43 .0729983 10278.11	33.79 7.73 -0.15 4.97 54.70	0.000 0.000 0.878 0.000 0.000	1.147869 .4332996 -46143.77 .122315 528358	1.395932 1.077252 42034.91 .6033471 596087	
	sigma_u sigma_e rho	413429.07 119256.22 .92318455	(fraction of variance due to u_i)					
<pre>F test that all u_i=0:</pre>			F(17, 2271) = 852.21			Prob >	Prob > F = 0.0000	

Adding Harvey's missing states back in

Solutions?

- The volatility of customer bills in RTO states reflects a number of issues
- Perhaps the most significant is the bizarre pricing policies in many RTOs

 In New York, almost 10% of bids are so-called "hockey stick bids"

Substantial Evidence Exists that Secrecy is Very Expensive

- When Texas reduced the lag in releasing bid data, average and peak bids fell immediately
- This is not true in New York, although New York continues to hide bidders' identities

 The clear conclusion is that hiding bidders from the market is a costly choice